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◼ Introduction
In Parts 1 & 2 of this series of notebooks I described two distinct computational illustrations of Parrondo's Paradox. In
Part 1—drawing my inspiration from recent study (Mathematica notebook dated 22 September 2013) of the "Stanley's
digital ratchet"

Youngki Lee, Andrew Allison, Derek Abbott & H. Eugene Stanley, "Minimal Brownian Ratchet: An Exactly Solvable
Model," PRL 91,  220601 (2003)

—I phrased the issue as it relates to a class of random walks on a 3-vertex graph; it was, indeed, LAAS's reference to 

G. P. Harmer & D Abbot, "Parrondo's Paradox," Statistical Science 14, 206-213 (1999)

that brought Parrondo's paradox to my attention. In Part 2 I look to the statistical consequences of playing many-flip
Parrondo games many times (many random walks on an infinite lattice). The two approaches to the problem involve
quite  different  analytical  methods,  have quite  a  different  feel,  and yield  results  that  are  conclusive  in  the  former
instance, only statistically suggestive in the latter, but in general agreement. 

But in neither of those notebooks did I attempt to indicate WHY the Parrondo game leads to its paradoxical results.
That is the issue with which I attempt to deal here.

With the equivalence of the two approaches established, the first—from an analytical viewpoint—has much to recom-
mend it. It is finitistic, presents the Parrondo phenomenon as a property of a certain class of Markov processes that act
on  3-dimensional  stochastic  state  vectors,  and  avoids  all  reference  to  the  statistics  of  many  long  games.  In  this
approach to the WHY question I adopt the first (finite Markovian) approach…but may later attempt to expose the
foundations of the statistical approach.  

◼ Setting things up
Random walks on the following graph (NOTE: The commands that generated the graphics used in this notebook are
stored in a separate notebook: Parnondo's Game Graphics)
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are generated by Markov matrices of the form

M1←1 M1←2 M1←3
M2←1 M2←2 M2←3
M3←1 M3←2 M3←3

where each column is stochastic (non-negative elements that sum to unity). We will be concerned with walks in which
the next step (to one nearest neighbor or the other) is determined by flipping the coin that lives at the presently occu-
pied vertex. Coins don't provide a "stand in place" option, so the diagonal elements of the matrix vanish. The resulting
matrix is a 3-parameter object, of the form 



where each column is stochastic (non-negative elements that sum to unity). We will be concerned with walks in which
the next step (to one nearest neighbor or the other) is determined by flipping the coin that lives at the presently occu-
pied vertex. Coins don't provide a "stand in place" option, so the diagonal elements of the matrix vanish. The resulting
matrix is a 3-parameter object, of the form 

" =

0 1 - y z
x 0 1 - z

1 - x y 0
;

where {x, y, z} range on the unit interval.

REMARK: Diagonal elements would appear if (for example) we associated with each vertex a die, with {0, H, T}
inscribed on opposite faces. But ther additional three parameters would greatly complicate the analysis. It would, in
particular, deprive us of some valuable graphic resources.
We have

Eigenvalues["]

1,
1

2
-1 - -3 + 4 x + 4 y - 4 x y + 4 z - 4 x z - 4 y z ,

1

2
-1 + -3 + 4 x + 4 y - 4 x y + 4 z - 4 x z - 4 y z 

Note the occurance here (and below) of the symmetric polynomials 

x + y + z and x y + y z + z x

Simplify[-3 + 4 x + 4 y - 4 x y + 4 z - 4 x z - 4 y z ⩵ 4 (x + y + z) - 4 (x y + y z + z x) - 3]

True

The leading eigenvalue is unity (the others are typically complex, with amplitudes < 1) and the associated eigenvector
is

Eigenvectors["]〚1〛

-
-1 + y - y z

1 - x + x y
, -

-1 + z - x z

1 - x + x y
, 1

Multiply by the shared denominator and divide by the sum

Simplify(-1 + x - x y) -
-1 + y - y z

1 - x + x y
, -

-1 + z - x z

1 - x + x y
, 1

{-1 + y - y z, -1 + z - x z, -1 + x - x y}

μ = Total[%]

-3 + x + y - x y + z - x z - y z

(not that  μ is again assembled from symmetric polynomials ) to obtain the stochastic eigenvector

m = Transpose
{-1 + y - y z, -1 + z - x z, -1 + x - x y}

μ
;

m // MatrixForm
-1+y-y z

-3+x+y-x y+z-x z-y z

-1+z-x z
-3+x+y-x y+z-x z-y z

-1+x-x y
-3+x+y-x y+z-x z-y z
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Total[Transpose[m]〚1〛] // Simplify
Simplify[".m ⩵ m]

1

True

The eigenvector m acquires its special importance from the circumstance that for all initial stochastic vectors

P =

p1
p2
p3

one has

LimitMatrixPower[-, n].P, n → ∞ ⩵ m

so m describes the asympototic steady state.

◼ The current vector
The action of a Markov matrix can be described in terms of the "probability currents" that it sets up, the basic concept
being 

Currentj←i = Mj←i pi


neighbors j of i

Currentj←i = single iteration decrease of pi

In the asymptotic steady state there is "conservation of probability" at every vertex; one has 


neighbors j of i

Currentj←i - Currenti←j = 0

and an  analog  of  Kirchhoff's  node  law comes  naturally  into  play.  The  "Kirchhoff  matrix"  emerges  as  a  kind  of
"decorated  adjacency matrix." The currents Currentj←i  might, for general graphs, be displayed as elements of an
antisymmetric matrix, but for cyclic graphs—such as the grapn of present interest
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—they are more efficiently displayed as elements of a current vector, the elements of which acquire their sign from the
arbitrary convention that "clockwise means positive". Relative to that convention, we can define "edge currents": thus

EdgeCurrent12 = Current2←1 - Current1←2

etc. On the 3-graph it is convenient to give edges the name of the opposite vertex, and to display the edge currents as
elements of a vector:

j1
j2
j3

=

M3←2 p2 - M2←3 p3
M1←3 p3 - M3←1 p1
M2←1 p1 - M1←2 p2

In the asymptotic steady state we have (at vertex #1, and similarly at other vertices)

in1 - out1 = M1←2 p2 + M1←3 p3 - M2←1 p1 - M3←1 p1 = 0

which by rearrangement becomes
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M2←1 p1 - M1←2 p2 = M1←3 p3 - M3←1 p1

or

j2 = j3

We conclude that in the steady state (1) the probabilities at all vertices become constant, and (2) all edge currents
become equal:

j1 = j2 = j3 ≡ J

Interestingly, the asymptotic constancy of the probabilities does not imply J = 0: in the asymptotic state probability
typically  continues  to  "circulate,"  with  depletion/replenishment  in  perpetual  balance  at  every  vertex  (where  the
conserved  probabilities  are  typically  unequal  to  each  other).  The  situation  resembles  perpetual  current  flow in  a
superconductor. One is reminded of M. C. Escher's "Waterfall":
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◼ Parrondo Currents
For the most general "no stand in place" Markov process on a connected 3-graph we have

" =

0 1 - y z
x 0 1 - z

1 - x y 0
;

The asymptotic stochastic eigenvector is, as was already established,

P =

-1+y-y z
-3+x+y-x y+z-x z-y z

-1+z-x z
-3+x+y-x y+z-x z-y z

-1+x-x y
-3+x+y-x y+z-x z-y z

;

Total[Transpose[P]〚1〛] // Simplify
Simplify[".P ⩵ P]

1

True

The current vector (in the asymptotic limit) is
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AsymptoticCurrentVector = Simplify
"〚3〛〚2〛 P〚2〛〚1〛 - "〚2〛〚3〛 P〚3〛〚1〛
"〚1〛〚3〛 P〚3〛〚1〛 - "〚3〛〚1〛 P〚1〛〚1〛
"〚2〛〚1〛 P〚1〛〚1〛 - "〚1〛〚2〛 P〚2〛〚1〛




-1 + y + z - y z + x (1 - z + y (-1 + 2 z))

3 + y (-1 + z) - z + x (-1 + y + z)
,


-1 + y + z - y z + x (1 - z + y (-1 + 2 z))

3 + y (-1 + z) - z + x (-1 + y + z)
, 

-1 + y + z - y z + x (1 - z + y (-1 + 2 z))

3 + y (-1 + z) - z + x (-1 + y + z)


in which all elements are seen to be—as anticipated—identical. We give them the name 

J =
-1 + y + z - y z + x (1 - z + y (-1 + 2 z))

3 + y (-1 + z) - z + x (-1 + y + z)
;

The equation J = 0 defines a null surface which bisects the unit cube within which the parameters {x, y, z} range:

GeneralNullSurface = ContourPlot3D[J ⩵ 0, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}];
Gauge = Graphics3D

Thick, Line[{{0, 0, 0}, {1, 1, 1}}],

{Yellow, Sphere[{0.5, 0.5, 0.5}, {0.02}]},
{Red, Sphere[{0.25, 0.25, 0.25}, {0.02}]},
{Blue, Sphere[{0.75, 0.75, 0.75}, {0.02}]};

ShowGeneralNullSurface, Gauge

From

6   Parrondo's Game 3.nb



J /. {x → 0, y → 0, z → 0}
J /. {x → 1, y → 1, z → 1}

-
1

3
1

3
we see that the red sphere identifies the region in which J < 0, the blue sphere identifies the region in which J > 0. The
obvious symmetry of the null surface reflects the fact that J is assembled from symmetric polynomials 

1
x + y + z
x y + y z + z x
x y z

The limiting J-value 1
3

 can be understood as a reflection of equidistribution (probability the same at each of the three
vertices) and a coin loaded so that it lands heads every time (else tails every time, which flips the sign).

◼ The A coin

Parrondo's A coin lands heads with probability x,  ∴ atails with probability 1-x. As a walk on 
the 3-graph it is modeled by 

: = " /. {y → x, z → x};
: // MatrixForm

0 1 - x x
x 0 1 - x

1 - x x 0

The associated asymptotic current is

JA = Simplify[J /. {y → x, z → x}]

1

3
(-1 + 2 x)

One has JA = 0 when the coin is fair: x = 1
2

.  The maximal/minimal values of J are ± 1
3

.

◼ The B coins

Coin B1—used when the money in the pot is not a multiple of 3—lands heads with probability y.
Coin B2—used when the money in the pot is a multiple of 3—lands heads with probability z. The pair (+ their usage
rule) are modeled by

; = " /. {x → y};
; // MatrixForm

0 1 - y z
y 0 1 - z

1 - y y 0

The steady stochastic state has become
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PB = Simplify[P /. x → y];
PB // MatrixForm

1+y (-1+z)

3+y2+2 y (-1+z)-z
1+(-1+y) z

3+y2+2 y (-1+z)-z

1-y+y2

3+y2+2 y (-1+z)-z

which possesses the anticipated properties:

Total[Transpose[PB]〚1〛] // Simplify
Simplify[;.PB ⩵ PB]

1

True

The associated asymptotic current is

JB = Simplify[J /. x → y]

-1 - 2 y (-1 + z) + z + y2 (-1 + 2 z)

3 + y2 + 2 y (-1 + z) - z

From

JB /. {y → 0, z → 0}
JB /. {y → 1, z → 1}

-
1

3
1

3
we see that JB < 0 below the following null curve (marked by a red disk), JB > 0 above the curve (blue disk):
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NullCurveB = ContourPlot[JB ⩵ 0, {y, 0, 1}, {z, 0, 1}];
GaugeB = Graphics

Line[{{0, 0}, {1, 1}}],
Red, Disk[{0.25, 0.25}, 0.02],

Yellow, Disk[{0.50, 0.50}, 0.02],

Blue, Disk[{0.75, 0.75}, 0.02];

Show[{NullCurveB, GaugeB}]
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◼ ABABAB⋯ version of Parrondo's game

The result of flipping first the A-coin, then the B-coin is described by

ℂ = ;.:;
ℂ // MatrixForm

x (1 - y) + (1 - x) z x z (1 - x) (1 - y)
(1 - x) (1 - z) (1 - x) y + x (1 - z) x y

x y (1 - x) (1 - y) x (1 - y) + (1 - x) y

NOTE: Products/powers of  Markov matrices with 0s on the diagonal  typically have—as here—non-zero diagonal
elements, which signify not "stand in place" but "return to place."

We look first to construction of the asymptotic stochastic state vector

Eigenvalues[ℂ]〚1〛

1

ξ = SimplifyEigenvectors[ℂ]〚1〛

(-1 + y)2 + x2 1 + y2 + 2 y (-1 + z) - z - x (-1 + y) (-2 + 2 y + z) 

x2 1 + y2 + 2 y (-1 + z) - z + (-1 + y) (-1 + z) - x (-1 + y) (-2 + y + 2 z),

x2 1 + y2 + 2 y (-1 + z) - z + (-1 + y) (-1 + z) - x (-2 + 3 y) (-1 + z) 

x2 1 + y2 + 2 y (-1 + z) - z + (-1 + y) (-1 + z) - x (-1 + y) (-2 + y + 2 z), 1
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Denominator[ξ〚1〛] ⩵ Denominator[ξ〚2〛]

True

ξ2 = SimplifyDenominator[ξ〚1〛] ξ

(-1 + y)2 + x2 1 + y2 + 2 y (-1 + z) - z - x (-1 + y) (-2 + 2 y + z),

x2 1 + y2 + 2 y (-1 + z) - z + (-1 + y) (-1 + z) - x (-2 + 3 y) (-1 + z),

x2 1 + y2 + 2 y (-1 + z) - z + (-1 + y) (-1 + z) - x (-1 + y) (-2 + y + 2 z)

ξ3 = Simplify[Total[ξ2]]

3 x2 1 + y2 + 2 y (-1 + z) - z + (-1 + y) (-3 + y + 2 z) + x -6 - 3 y2 + y (10 - 6 z) + 5 z

and so are led to the vector

PC = Transpose
ξ2

ξ3
;

PC // MatrixForm

(-1+y)2+x2 1+y2+2 y (-1+z)-z-x (-1+y) (-2+2 y+z)

3 x2 1+y2+2 y (-1+z)-z+(-1+y) (-3+y+2 z)+x -6-3 y2+y (10-6 z)+5 z

x2 1+y2+2 y (-1+z)-z+(-1+y) (-1+z)-x (-2+3 y) (-1+z)

3 x2 1+y2+2 y (-1+z)-z+(-1+y) (-3+y+2 z)+x -6-3 y2+y (10-6 z)+5 z

x2 1+y2+2 y (-1+z)-z+(-1+y) (-1+z)-x (-1+y) (-2+y+2 z)

3 x2 1+y2+2 y (-1+z)-z+(-1+y) (-3+y+2 z)+x -6-3 y2+y (10-6 z)+5 z

which, as we demonstrate, does possess the required properties:

Total[Transpose[PC]〚1〛] // Simplify
Simplify[ℂ.PC ⩵ PC]

1

True

We look next to construction of the components of the asymptotic edge currents—previously defined

-〚3〛〚2〛 P〚2〛〚1〛 - -〚2〛〚3〛 P〚3〛〚1〛
-〚1〛〚3〛 P〚3〛〚1〛 - -〚3〛〚1〛 P〚1〛〚1〛
-〚2〛〚1〛 P〚1〛〚1〛 - -〚1〛〚2〛 P〚2〛〚1〛

—and obtain expressions

JC1 = Simplify[ℂ〚3〛〚2〛 PC〚2〛〚1〛 - ℂ〚2〛〚3〛 PC〚3〛〚1〛];
JC2 = Simplify[ℂ〚1〛〚3〛 PC〚3〛〚1〛 - ℂ〚3〛〚1〛 PC〚1〛〚1〛];
JC3 = Simplify[ℂ〚2〛〚1〛 PC〚1〛〚1〛 - ℂ〚1〛〚2〛 PC〚2〛〚1〛];

which we verify are identical

JC1 ⩵ JC2 ⩵ JC3

True

We are led thus to the construction

JC = JC1

-x3 1 + y2 + 2 y (-1 + z) - z + (-1 + y)2 (-1 + z) - 3 x (-1 + y)2 (-1 + z) + 3 x2 (-1 + y)2 (-1 + z) 

3 x2 1 + y2 + 2 y (-1 + z) - z + (-1 + y) (-3 + y + 2 z) + x -6 - 3 y2 + y (10 - 6 z) + 5 z

This gives
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JC /. {x → 0, y → 0, z → 0}
JC /. {x → 1, y → 1, z → 1}

1

3

-
1

3
Note the sign reversal, which I emphasize by comparing

JA /. x → 0
JB /. {y → 0, z → 0}
JC /. {x → 0, y → 0, z → 0}

-
1

3

-
1

3
1

3
The following figure shows the JC null surface. Blue/red spheres identify the regions in which JC is positive/negative.
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NullSurfaceC = ContourPlot3D[JC ⩵ 0, {x, 0, 1}, {y, 0, 1}, {z, 0, 1}];
GaugeC = Graphics3D

Line[{{0, 0, 0}, {1, 1, 1}}],
{Blue, Sphere[{0.25, 0.25, 0.25}, 0.02]},
{Yellow, Sphere[{0.50, 0.50, 0.50}, 0.02]},
{Red, Sphere[{0.75, 0.75, 0.75}, 0.02]};

ShowNullSurfaceC, GaugeC

◼ The parameter region that supports Parrondo's Paradox
We owe to Parrondo the discovery that there exist {x, y, z} parameters for which the A-game and B-game are losing
games, but the AB-game is a winning game, which in terms of the present analysis means

JA[x, y, z] < 0
JB[x, y, z] < 0
JC[x, y, z] > 0

Parrondo himself—go to 

Hyperlink"Parrondo Home Page", "http://seneca.fis.ucm.es/parr/"

Parrondo Home Page

and open Paradoxical Games > The Seminal Document on the Games: "How to cheat a bad mathematician"—suggests
parameters
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x =
1

2
- 0.005

y =
3

4
- 0.005

z =
1

10
- 0.005

that do the job

JA /. x →
1

2
- 0.005

JB /. y →
3

4
- 0.005, z →

1

10
- 0.005

JC /. x →
1

2
- 0.005, y →

3

4
- 0.005, z →

1

10
- 0.005

-0.00333333

-0.00289843

0.00224585

but convey the impression that the "Domain of Paradox" is quite restricted. In this connection, see also Gregory P.
Harmer, Derek Abbott,  Peter G. Taylor & Juan M. R. Parrondo, "Brownian ratchets and Parrondo's games," Chaos 11,
705-714 (2001) : Figure 4, page 709, which conveys the same impression.
The present line of argument indicates that the Parrondo phenomenon is actually quite robust, the domain of paradox
quite extensive. It can be explored by means of commands 

{JA, JB, JC};
Manipulate[%, {x, 0, 0.5}, {y, 0, 1}, {z, 0, 1}]

x

y

z

in which I have exploited the fact that A-game losing ⟺ 0 < x < 1
2

. Look particularly to the wonderfully symmetric
paradoxical case x = y =  z = 0.2, to which I was led by such exploration:

JA /. {x → 0.2}
JB /. {y → 0.2, z → 0.2}
JC /. {x → 0.2, y → 0.2, z → 0.2}

-0.2

-0.2

0.2

The situation is made vividly clear by the following figure, which shows the JB and JC null surfaces in the half of the
unit cube in which JA < 0:
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SemiBNull = ContourPlot3D[JB ⩵ 0, {x, 0, 0.5}, {y, 0, 1}, {z, 0, 1}];
SemiCNull = ContourPlot3D[JC ⩵ 0, {x, 0, 0.5}, {y, 0, 1}, {z, 0, 1}];
SymmetricParadoxicalPoint =

Graphics3D[{{Gray, Sphere[{0, 0, 0}, 0.02]}, {Yellow, Sphere[{0.2, 0.2, 0.2}, 0.02]}}];
ShowSemiBNull, SemiCNull, SymmetricParadoxicalPoint, AspectRatio → Automatic

The  Paradoxidal  Domain  is  the  domain  that  contains  the  origin  (gray  sphere),  which  in  particular  contains  the
"symmetrical point" {0.2, 0.2, 0.2} (yellow sphere).  Evidently 25% of the points in the unit  cube are paradoxical
points.
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